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The Discrete Tight Binding Approximation 
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The discrete analog of the tight binding approximation is investigated. Let 2o be 
some energy level of a real discrete potential q. Then there exists an energy band 
for a one-dimensional 2N-periodic chain of the same atoms which lies near 2 o. 
We study the asymptotic behavior of this band when N tends to infinity. 
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INTRODUCTION 

We discuss the energy band of the discrete one-dimensional  Schr6dinger  
equat ion with a per iodic  potent ial  Q (we say: a chain of a toms)  which is 
the sum of the shifts of the summable  potent ial  q (a single atom).  Let 20 
be an energy level of the potent ia l  energy function q. Then there exists an 
energy band of the potent ia l  Q which lies near  20. This band is described 
by the asymptot ic  formula 

2(m, N) = 20 + s( N ) + cos(2Nm) 6(N)/2 + e(rn, N) ( 1 ) 

where m is a Bioch wave number  or  quas imomentum,  2N is the distance 
between atoms,  s(N) is the shift of the band relative to 20, 6(N) is the 
width of the band,  and e(m, N) is a small function as N ~  + ~ .  The for- 
mula (1) is usually studied in the f ramework of the tight binding method,  121 
but the main criticism of this method lies in the difficulty of testing its 
convergence. On the other  hand,  if the a tomic  stats are not  well-localized, 
the energy band equat ion is quite difficult to evaluate  due to the presence 
of three-center  integrals. 

The r igorous t reatment  of the problem in the one-dimesional  case has 
been suggested by many  authors.  ~4 71 
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The goal of this paper is to find conditions on the potential function q 
such that Eq. (I) is valid (Theorem 8.1, parts4c, 4d) as well as to get a 
similar formula in the general case (Theorem 8.1, parts 1-4b). The parameter 
d in Theorem 8.1 can be written as 2 cos(2Nm). 

1. S I N G L E  A T O M  

First, on the space 12(Z) we consider the one-dimensional discrete 
Schr6dinger equation 

- y ( n + l ) - y ( n - 1 ) + q ( n ) y ( n ) = 2 y ( n ) ,  n ~ Z  (1.1) 

for a real discrete potential function q(n) such that 

Y', lq(n)l < oo (1.2) 
n = - - o o  

The spectrum a ( q ) c  R of this atom consists of the interval [ - 2 ,  2-] and a 
number of energy levels which lie beyond this interval. 

Let 2 o ~ [ - 2 , 2 ]  be an eigenvalue and let O(n) be a solution of 
Eq. (1.1) with 2 = 20 such that 

q-zt2~ 

02(n) = 1 (1.3) 
n = - oc  

i.e., O(n) is a normalized eigenfunction. 
Let ~0(n) be another solution of Eq. (1.1) with 2=~-o. The discrete 

Wronskian t*~ of those solutions is 

W[O, q~] = O(n) q~(n + 1 ) - O(n + 1 ) q~(n) = 1 (1.4) 

It is worthwhile noting that the solution q~(n) is defined by the relation 
(1.4) only up to a term proportional to O(n). However, this ambiguity does 
not affect the results of this paper. 

It is convenient to introduce following notations: 

~ = [ 1 2 o 1 + ( 2 o - 4 ) ' / 2 ] / 2  and 6 = ~ -  ~ - '  = ( 2 o - 4 )  ~/2 

It can be established that there are positive constants Co and C~ such that 

10(n)l <<,Cor -I'l, I ~0(n)l ~<C~ I'1, n E Z  (1.5) 

We will need the Inl ~ + ~  asymptotic behavior of the solutions O(n) 
and ~o(n). 
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For n ~ Z  let us define the following finite sets of integers: 
J(n) = { j e Z : n - I n l  <2j<~n+ Inl} and Y(n)=J(n)wJ(-n). For every 
N > 0 we introduce the function 

p(N) = y'+ [q(n)l + r -2N (1.6)  
t ~  Z \ Y i N )  

It follows from (1.2) that p(N) tends to zero as N tends to infinity. Using 
this function we shall get the required estimates of the solutions O(n) 
and ~o(n). 

L e m m a  1.1. There are some constants C + ~ O  such that at 
n-*  ___ ov we have 

O(n) = C_+ r + O(p(Inl))] 

q3(n) = +(C+_6)-' eM"l[1 +O(p(Inl/2))] (1.7) 

Y+ O(k) ~otk) = (n/~)[-1 + o (1 ) ]  
k �9 J(n) 

Proof. One can find the necessary arguments in ref. 5. 

For later use we will need the following combination of two functions 
f(n) and g(n): 

l-f  g ] ( n ) = f ( n )  g ( - n  + 1 ) - f ( n  + 1 ) g ( - n )  (1.8) 

Then for those solutions O(n) and ~o(n) of Eq. (1.1) chosen earlier we get 
asymptotic formulas with n ~ ___~, which follows from Lemma 1.1: 

a (n )=  [~o, tp](n) = +(6C+C_) -I ~21"+[1 + O(p(Inl/2))] (1.9) 

b(n) = [0, q~](n)= O(p(Inl/2)) (1.10) 

c (n)= [0, 0 ] ( n ) =  ++_6C+C_r +O(p(Inl))] (1.11) 

2. PERIODIC  C H A I N  OF I D E N T I C A L  A T O M S  

For some fixed N > 0 ,  using the potential q(n), we consider the 
periodic potential Q(n, N) [-in shortened form Q(n) or Q] with period 2N, 
defined by 

d-oc~ 

Q(n,N)= ~ q(n+2Nk) (2.1) 

The convergence of the series in (2.1) is guaranteed by the condition (1.2). 
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We now consider the Schr6dinger equation 

- y (n+l ) - y (n -1 )+Q(n ,N)y (n )=2y(n ) ,  n~Z (2.2) 

The spectrum a ( Q ) c  R of this chain consists of at most 2N closed intervals 
(allowed energy bands). 

It is known (s) that 

a ( Q ) =  {2ER'  IF(2, U)1 ~<2} (2.3) 

where F(2, N) is the discriminant of Eq. (2.2). Hence the band limits are 
defined by 

F(2, N ) =  +2 

Let ON and q~u be two linearly independent solutions of Eq. (2.2) with 
W[Ou, ~0u]--= 1. Then, using the abbreviation (1.8), we obtain (3) 

F(2, N ) =  [Ou, q0N](N) + [ON, q~N](--N) (2.4) 

Now our problem is to choose functions q~N(n) and ON(n). 

3. C O N S T R U C T I O N  OF q)N(n) A N D  ON(n ) 

We construct q~N(n) and ON(n) using the method of variation of 
constants. Putting 

x = ) , - - ) ,  o, v(n,N)=Q(n,N)-q(n), w(n,s: ,N)=v(n,N)-x (3.1) 

we can write the Schr6dinger equation (2.2) as 

-y(n + 1 ) - y(n - 1 ) + [q(n) - 20] y(n) = -w(n, to, N) y(n) (3.2) 

Note that the functions q~(n) and O(n) are solutions of (3.2), with the 
right-hand side being zero. Hence we can put 

qgN(n ) = ct(n)[~p(n) + y(n) 0(n)] (3.3) 

where c~(n) and ~,(n) satisfy the conditions ~(0)= 1, ~,(0)= 0, and 

[c~(n + 1 ) -  ~(n)] q~(n+ 1)+ [c~(n + 1) y(n + 1 ) - ~ ( n )  7(n)] O(n+ 1 ) = 0  

(3.4) 

Then, from (3.4) we have q~N(0)=~O(0), ~ON(1)=q~(1). Furthermore, the 
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function q~N(n) will be the solution of Eq. (3.2) if and only if the functions 
a(n) and ),(n) satisfy the following system of nonlinear recurrence equations 

~(n+ 1)-- c~(n) = ~(n + 1) w(n+ 1) O(n+ 1) 

• [q0(n + 1)+T(n+ 1) 0(n + 1)] (3.5) 

y(n+ l)--7(n)= --w(n+ l)[q~(n+ l)+ ~,(n+ l)O(n+ l)] 2 (3.6) 

Here we have used the relations (3.4) and (1.4). 
Furthermore, we shall need to construct the solution ON(n) of 

Eq. (3.2) so that the Wronskian W[ON, ~0N] = 1. TO do so we put 

ON(n) = a-l(n) O(n) + fl(n) q~ N (n) (3.7) 

where the function fl(n) is such that fl(0)= 0 and 

[ot-~(n+l)-ot-~(n)]O(n+l)+[fl(n+l)-fl(n)]q~N(n+l)=O (3.8) 

By (3.8) we have ON(n+ 1)=~-~(n)O(n+ 1)+fl (n)q~u(n+l) .  Thus, as a 
consequence of this fact and the identity O(n)qJN(n+ l ) - - 0 ( n +  1)qgN(n) 
----~(n), the Wronskian of the functions 0N and ~0u is equal to one. 
Moreover, 0N(0)= 0(0), 0N(1)= 0(1), and the function ON(n) will be the 
solution of Eq. (3.2) if and only if the function fl(n) satisfies the following 
recurrence relation: 

fl(n+ l)--fl(n)=w(n+ l)O2(n+ l)~x-l(n)ot-L(n+ l) (3.9) 

Note that the functions a, 7, and fl depend on n, x, N, and 20. 

4. THE P R I N C I P A L  E Q U A T I O N  

Now inserting formulas (3.3) for qbc(n) and (3.7) for ON(n) into (2.4) 
and using the abbreviations (1.9)-(1.11), we obtain 

F(~r + 20, N ) =  [ f l (N) -  f l ( - N ) ]  ~(N)~( -N)[~(N)  + T(N)b(N) 

--  7( - -  N )  b( - N )  + 7 ( N )  7( - N)  c(N) ] + [ b ( N )  

+ c(N) 7 ( - N ) ]  a(--N)/ot(N) + [ b ( - N )  

+ c ( - N )  T(N)] ot(N)/=(-N) (4.1) 

Let 

G=ot_ot+(a+T+b+ +T_b_  +T_T+c) 

H = ( b +  + T _ e ) ~ _ / a + - ( b _  +~,+c)~+/a_ 

(4.2) 

(4.3) 
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with ~+ =~(_+N), ~'+ =~,(+_N), a=a(N), b+= +_b(+_N), and c=c(N). 
Taking into account (3.9), we can rewrite Eq. (4.1) in the following form: 

F(X+2o, N)=G ~ [v(k)-x]O2(k)c~-l(k)ct-J(k-1)+H 
k e  Y ( N )  

Note that the functions G and H depend on h-, N, and ~ = ~(2o). 
According to (2.3), for every de  [ - 2 , 2 ]  the equation F(2, N)=d 

defines the spectrum 2(d; N ) e  a(Q). We write this equation in the form 

r c = [  ~ v(k)O2(k)~-'(k)c~-'(k-1)+(H-d)G -'] 
k E  F I N )  [ ]-' x ~ 02(k)c~-t(k)e-'(k - 1) (4.4) 

k,~ Y I N )  

or, in shortened form, x = f ( x ) .  It is worthwhile noting that the function 
f(K) depends also on d, N, and ~ = ~(2o). 

The main goal of our paper is to investigate the asymptotic behavior 
of the solution x(d; N) = 2(d; N ) -  2 o of Eq. (4.4) which tends to zero as 
N ~  + ~ .  

5. A S Y M P T O T I C  F O R M U L A S  FOR a (n )  A N D  y (n )  

Let us define a decreasing function r(N) as 

r ( N ) = s u p  ~ ]v(n,t)l~-21"l+~ -2N, N > 0  (5.1) 
I ~ N  n E  Y(I )  

Note that the definition of the function p(N) can be rewritten in the 
following form: 

p ( N) =  ~ ~ Iq(n+2kn)l+~ -2u, N > 0  
n e  Y ( N )  k# ~O  

Therefore, for every N >  0 

p(N)>~ ~ Iv(n,N)t+?,-2N>~r(N) 
n E  Y ( N )  

Using these two functions, we will get all required estimates. 
We will study the spectrum a(Q) near 20. Hence, as follows from the 

perturbation theory, we can suppose that 

I~l ~ C~.r(N) 

for some fixed positive constant C~.. 

(5.2) 
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The condition (5.2) defines the interval I=I(N)= [-C~.r(N), C~.r(N)] 
R on which we will investigate the equat ion x =f(~c). 

In this paper  we shall write 0/0~ as c~.. 

L e m m a  5.1.  Let C~ be a positive constant. There exists a positive 
number  No such that  for every N >~ N O and for every ~: E I(N) there is one 
and only one solution ),(n) of Eq. (3.6) such that on the interval n ~ Y(N) 
we have estimates 

h'(n)l ~ C;.p(N) ~'-I,,I and 10~'(n)l ~< Ci.~ zl't (5.3) 

t where C~. and C~. are some constants. We can set, for instance, 

C~.=(1 +C~.)(C~,+Co)'-/(1-~-'-) and C'~.=2(C,p+Co)Z/(1-~-'-) 

ProoL We need to study Eq. (3.6). The solution 1' of this equat ion 
behaves asymptotical ly for n large enough as ~2M,,( Introduce the new 
function z 

z (n )=  ~,(n) ( -2h''l , n e Z  (5.4) 

Putt ing (5.4) in (3.6), we get 

I~-~-z(n-1)-w(n)[~oo(n)+z(n)Oo(n)] 2, n > 0  

~(n) = , (r  + l )  + w(n + 1 )[q,o(, ,  + l )  

"[. + z ( n + l ) 0 o ( n + l ) ] - } , "  n<~0 

(5.5) 

with ~oo(n)=~o(n)r and 0o(n)=0(n)~), ,I .  We will now show that the 
function z(n) is a bounded function on Y(N) uniformly with respect to N. 

For  the proof  we will use the contract ion mapping  principle on the 
space of bounded functions c(Y(N)) with the norm 

I l z l l u :  max  I-(n)l ,  zec(Y(N)) 
n r  ) ' I N )  

Let A be an opera tor  on the right-hand side of (5.5), i.e., 

I~-2z(n - 1)-w(n)[q)o(n)+z(n)Oo(n)] 2, n > 0  

(Az)(n) = ~r -2{z(n + 1 ) + w(n + 1 )[q%(n + 1 ) 

{ +z(n+l)Oo(n+l)]2},  n<~O 

The opera tor  A maps  the closed unit ball 

BI(N ) = {z ~ c( Y(N)): II-[I N ~< 1 } 
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into itself for sufficiently small N - 1  and K. Indeed, the estimates (1.6) give 
10o(17)1 ~< Co, I~0o(n)l ~< C~o, n ~ Z. 

Hence for z e B~(N) we obtain 

]lAz(n)ll u <~ ~ -  2 + (C~ + 1 )(C~ + Co) z p(N)  

Therefore, there is a number  No > 0  such that  for every N >  N O 

IIAzllN ~< 1 (5.6) 

if z~B~(N) .  On the other hand, A is a contractive opera tor  on B,.  To see 
this, suppose Zl, z2 e Bt(N). Then, as above, 

IIAz, - az211 u ~< [ 4 - 2  + 2(C~. + 1 )(C~ + Co) 2 p ( N ) ]  II z~ - z211N 

Hence we can set No such that for every N > No 

IlZz~ - az,_ll N <~ IIz, - z211N/2 (5.7) 

if z~, z2~ Bj(N).  Finally, if No is such that 

p(N)  <<. 614~(C~. + 1 )(C~, + C0) 2 ] - '  (5.8) 

then we have both (5.6) and (5.7) on B~(N). Hence for every N >  No and 
for every x e I ( N )  there exists one and only one solution z e c ( Y ( N ) )  of 
Eq. (5.5) satisfying the condition IlzllN ~< 1. 

Therefore, if n ~ Y(N), then 

h'(n)l ~< Ilzll N ~21,,i < IIAzll N ~21,,i < C;.p(N) ~21,,I 

with Cr = (1 + C~)(C~, + Co)Z~(1 - ~-2). 
For  further use we will need an estimate of the derivative 0~-7 of the 

function ~ with respect to the parameter  x. Since O,,?(n)=~2t"lO~.z(n), 
putting u(n)= 0~.z(n), we shall consider the identity with n > 0  (the case 
with n~<0 is analogous)  

u(n) = [~Oo(n) + z(n) 0o(n)] 2 

+ { r  l ) - 2 w ( n ) [ q ~ o ( n ) + z ( n )  0o(n)] 20o(n) u(n)} (5.9) 

For  the sake of simplicity, we write (5.9) as 

u(n) = g(n) + (Vu)(n) 

Since II gll u <~ (C~, + Co)2~( 1 - ~ - 2) and since the inequalities 

II vii ~< ~ -z  + 2(C~. + 1 )(Cq, + Co) 2 p(N)  <<. (1 + r -2)/2 < 1 
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hold by (5.8), we can estimate the function u, 

II u II N ~< (1 - II v i i ) - '  II g II u ~< 2 ( C ~  + Co)2/(1 - ~ - 2) 

Hence 

13~.y(n)l<~C'~r 21"s with C~.=2(C~+Co)2/(1-~ -2) 

Note that we may choose No such that for every N>~ No the function p(N) 
satisfies (5.8). Hence one can solve (5.5) by the method of successive 
approximations. QED 

L e m m a  5.2. Let C~ be a positive constant. There exists a positive 
number N~ such that for every N>~N~ and for every K~I(N) when 
n ~ Y(N) we have the estimates 

[In 0t(n)[ ~< C,(r(N) Inl + v(N)) and [0 K In ct(n)l ~< C', Inl (5.10) 

where C, and C'- are some constants. We can set, for instance, 

C,=C, Co(C,.+I) and C',=Cr 

Proof. According to (3.7), we will need to study the following 
recurrence relation: 

ct(n) = a ( n  + 1)[1 -w(n+ 1) ff(n + 1)3 

with @(n)=O(n)[q~(n)+y(n)0(n)]. In order to estimate the function c<(n) 
we rewrite the relation for ct in expanded form 

In ct(n)= -s ign(n)  ~ In[1 - w(k) ~k(k)] 
k~J(n) 

where J(n) is defined in Section 1 and 

sign(n) = {1, n > O  
--1, n~<0 (5.11) 

Since IIw(n, x, N )  ~(n)ll  N ~ 0 as N---, + ~ we can express the logarithm 
function as a power series in w(k)r Then we get 

IIln c<(n)ll ,v ~< C,[Nr(N) + p(N)]  

with C,>~Co(C~.+I/N)[C~o+C~,Cop(N)]. By analogy we can find an 
estimate for 0~. In ct(n) from 

0~. In ct(n) = sign(n) ~ [1 - w(k) ~(k)]  - i  [w(k) OK@(k) + @(k) O~w(k)] 
k ~ J (  n ) 

822/75/1-2-21 
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Since w(k)O~4b(k)+ ~(k)&~w(k) is a bounded function, we immediately 
obtain the required estimate. QED 

From (3.6) and (3.5), taking into account the estimates for the 
functions ~(n) and ?(n), as a consequence of Lemmas 5.1 and 5.2, we obtain 
the following: 

Consequence.  
have 

y(n) = sign(n) 

In ct(n)= - x  sign(n) 

Uniformly with respect to x e I(N) and n E Y(N) we 

[~- - v(k, N)] ~p2(k) + ~21"lO(pZ( N)  ) 
k �9 Jln)  

O(k) tp(k) + O(p(N)[1 +lnl r (N)])  
kEJln)  

as N ~  +oo. 

6. A S Y M P T O T I C  F O R M U L A S  FOR THE F U N C T I O N S  G A N D  H 

In this section we will investigate the asymptotic behavior of 
functions G and H. 

Lemma 6.1. Let C, and C'~ be as in Lemma 5.2. Let C~., Cg, and 
C'e be positive constants and Cx > 6 IC+ C I, Cg > 2C'~(6 IC+ C I)- ~. Then: 

(a) There is a positive number N2 such that for every N>~ N2 and for 
every K ~ I(N) we have 

[ G(h-, N) [ -  i ~< Cgr -2N exp[2C=Nr(N)] 
(6.1) 

lO~.G(x, N)I ~< C'~N~ 2N exp[ 2C, Nr( N) ] 

(b) Uniformly with respect to h'~I(N) we have 

G-'(h', N) = 6C+ C_ [1 + O(p(N/2))] ~ - zu 

as N tends to the infinity. 

ProoL (a) To get the required estimate for the function G(K, N) we 
will evaluate all terms on the right-hand side of Eq. (4.2), which defines the 
function G(K, N). Now we will use Lemmas 5.1 and 5.2 and asymptotic 
formulas (1.9)-( 1.11 ). Let N~> max{No, N~ } and K e I(N). Therefore 

I~+~ I>~exp{-2C~[r(N) N + p ( N ) ] }  and lY+_l<~C;,p(N)~ 2~ 
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Furthermore, a=r ) 1], b+_=e2, and c=~ 2~(e3+6C+C ), 
where ej are independent of x and ej= o(1) as N ~  + ~ , j =  1, 2, 3. Hence 

IG(x, N)[ >/[(6 [C+C_l)-'- l e , I - 2  le3[ C;.p(N) 

-C~p2(N)(6 I f+  C_l + le31)] 

x ~2u exp{ -2C~[r(N) N+ p(N)] } 

Since p(N) and ei, j =  1, 2, 3, tend to zero with N ~  + ~ ,  there is a number 
N2>~max{No, N~} such that for every N>>,Nz and for every x e l ( N)  the 
required inequality holds: 

IG(K, N)I >1 C ;  ~2u exp[--2C,  r(N) N] 

The estimate for the derivative O~G is obtained analogously from its 
explicit expression 

O~G= [O~.(~+~_)](a+b+~,+ + b _ 7 _  + y + y _ c )  

+~ + ~_[b + O~.y +b_d~3'+cO~(~ +~_)] 

Here we suppose that the positive number N 2 was chosen so that for every 
N~> N2 estimates for G and O~G would both be true. 

(b) To get the asymptotic formula for G it is enough to find the 
asymptotic behavior of the main term ~ + ~  a. Substituting the results (1.9) 
and (5.5) into (4.2), we obtain the required asymptotic formula. QED 

Lemma 6.2. Let C, be as in Lemma 5.2. For some positive 
constant Ca- there are positive numbers N3, Ch, and Cj, such that for every 
N >_-N3 and for every x e I(N) the following estimates are true: 

IH(x, N)I <~ Ch p(N/2) exp[2C, r(N) N] 
(6.2) 

]O~.H(~;, N)[ <~ C'h[l + Np(N/2 ) ] exp[ZC~r(N) N] 

Proof. By (4.3), using the asymptotic formulas (1.9)-(1.11) and 
Lemmas 5.1 and 5.2, we obtain 

Ill(K, N)I <~ 2{ O(p(N/2)) + 6 lC + C_ l C;. p(N)[1 + O(p(N))] } 

x exp[2C~r(N) N] 

It leads to the required estimate for H. 
The estimate of the derivative 0~.H is done analogously. Here it is 

helpful to take into account the identity 0~.(~-+~)= +ct -+~o~. In cc QED. 

Now, let us prove an additional asymptotic formula. 
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L e m m a  6.3.  Uniformly with respect to x e I(N) we have 

]-| 
02(n )a - l (n )e - l (n -1 )  = l+O(p (N) )  

M 

y, 
n =  L 

To prove this lemma we will take 

N 

a ( n ) = -  
I11~tl-I-  | 

[a(n) -- a(n - 1 )] b(n) = a(M) b(M + 1 ) - a(L - 1 ) b(L) 

M 

n = L  

a(n)[b(n+ l ) - b ( n ) ]  (6.4) 

02(m), b(n)=a- l (n)~- l (n- -1) ,  L = I ,  M = N  

This leads to 

Therefore 

N 

2 
n =  1 

02(n ) ~ -  '(n ) ~ -  '(n - 1 ) 

N N 

= a - ' ( l )  ~ 02(n)+ ~ a - ' ( n ) [ c c - t ( n + l )  
n = 1 n = 1 

N 

- - a - I ( n  - 1 ) ]  ~ 02(m) 
m ~ t ~ +  1 

.N ~. 02(n) ~, OX(n)ot-'(n)ot-t(n - 1)-- 
= [  n = l  

N 

<<- ~ O=(n)+lw(1)@(1)l E O'-(n) 
n = N + l  t l ~ l  

N 

+ Y', ~-2(n) l l - w ( n + l ) @ ( n + l ) - [ 1 - w ( n ) @ ( n ) ] - ' l  
n ~ l  

N 

x ~ OZ(m)=O(p(N)) 
t~l = tt + 1 

where @(n) is as in the proof of the Lemma 5.2. 

I , , ,~m (6.3) 

as N--* +or. 

ProoL We will use the following formula, which is a discrete analog 
of the formula of integration by parts: 
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Here we have taken into account that because of (1.5) the following 
estimate is true: la(n)l <~(Co/6)i -z" for n~ Y(N). The part of the series 
with n ~<0 is calculated analogously. Hence, by the last results and the 
normalization condition, we obtain 

OZ(n)~- l (n )c t - l (n - -1 )=  l +O(p (N) )  QED 
n e  Y ( N )  

I . emma  6.4. Let v(n) = v(n, N)  be defined by (3.1). Then uniformly 
with respect to x ~ I(N) we have 

v ( n ) O 2 ( n ) c ~ - ' ( n ) ~ - t ( n - l )  = ~ v (n)O2(n)+O(p(N)r (N))  
n E  Y ( N )  n ~  Y ( N )  

as N ~  +oo. 

Proof. The proof is identical to the one for Lemma 6.3. We will use 
Eq. (6.4) with 

N 

a ( n ) = - -  ~ v(m)O2(m), b ( n ) = ~ - I ( n ) ~ - I ( n - - 1 ) ,  L = I ,  M = N  
r e = n +  1 

Note that now la(n)l ~< (C~/6) p(N) ~-2" with n ~ Y(N). Therefore 

~ 02(n) v(n) 02(n) o~-'(n) o:-l(n -- 1 ) -- ~ v(n) 
n =  I n =  l 

N 

~< Iw(1)ql(1)l ~ Iv(n)l OZ(n) 
n = l  

N 

+ ~ ~-2(n) l l - - w ( n + l ) ~ ( n + l )  
n =  1 

- [ 1 - w(n)  q4n)] - '1 

= O(p(N) r(N)) 

We have used here that 

N N 

N 

Iv(m)l 02(m) 
r e = n +  ] 

Iv(n)l C-2"~-2(n) = ~ Io(.)l ~-2" + O ( p ( N )  r (N) )  
n = l  n = l  

The part of the series with n~<0 is calculated analogously. Finally, 
combining the last results, we obtain the required formula. QED. 
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7. EX ISTENCE P R O O F  FOR T H E  ENERGY B A N D  

The following theorem is true. 

Theorem 7.1. Let C~ and do be positive constants such that 
C~>max{Co, 6 IC+C_l do} ifr(N) N ~ O  with N-* + ~ ,  and C~.>C~ in 
the opposite case. There exists a positive number no such that for every 
N>~no and for every d~[-do ,  do], Eq.(4.4) has one and only one 
solution K--~:(d; N) such that K E I(N). 

Proof. The equation x = f ( x )  can be solved by the method of suc- 
cessive approximations. Using results of the last section, we obtain 

'f(~)"<-t ~ Iv(n), 02(,,)[1 + o ( 1 ) ] + ( d o + i H l ) / i G ,  1 [ 1 + o ( 1 ) ]  
t .  nE Y(N) J 

~< ~ Jv(n)J 02(n)+o(r(N))+ {do+Chp(N/2)exp[2C,r(N)N)]} 
n r  Y ( N )  

x& IC+C_[[1 + o(1)] ~-2Nexp[2C, r(N) N] (7.1) 

If r(N)N-~O with N--* + ~ ,  then for large N 

If(K)I~ < ~ Iv(n)lOZ(n)+&lC+C-ldor 
n e  Y ( N )  

<~ C~.r(N) (7.2) 

In the opposite case, i.e., if r(N) N does not tend to zero, then for every 
sufficiently large N we have the obvious inequality 

-2 exp[4C,r(N)] < ~ - '  (7.3) 

Hence, since i - u =  o(r(N)) we obtain 

If(x)l <~ ~ Iv(n)l O'-(n)+o(r(N)) 
n ~  Y [ N )  

<~ C~r(N)[ I + o(1)] ~< Cur(N ) (7.4) 

Thus. there exists a positive number no such that for every N~>no the 
function f(K) maps the interval I(N) into itself. 

On the other hand. we will prove that we can choose no such that 
for every N>~no and for every xeI(N) the mapping .f(t~) satisfies the 
contraction condition 

I.f'(x)l < 1/2 (7.5) 
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Putting f (x)  =.fl (/r f2(x) with 

[ ]' f_,(~)= y. 02(n)c~ ' (n )c~- ' (n -1 )  
n E  Y IN )  

we obtain at N-- ,  + ~  

f l (x)  = O(r(N)), f2(x) = 1 + O(p(N)) (7.6) 

To estimate the derivatives, we will use the results of the last section. 
By the definition of the function f~ we have 

If't(K)l ~<2 ~ Iv(n)l O2(n)c~ I (n)#-I(n--  1)1O~.lnc~(n)l 
n E  Y ( N )  

+ IO~.HI . IGI - ' + (IHI + do) Ia~GI . IGI "- 

It is easily verified that, according to (7.3), uniformly with respect to 
x ~ I(N) and for every n ~ Y(N) we get 

02(n) ~ -107 ) ~ -1(11 - 1 ) [0~. In c~(n)[ ~< C~C'=(2 In ~)- t 

Hence 

If't(x)l ~< CoC'(ln ~) -~ p(N) + C'h[Np(N/2) + 1 ] C ~ - 2 N  exp[4C=r(N) N] 

+ Chp(N/2) ~-2N exp[8C~r(N) N] + doCg~ 2N exp[2C~r(N) N] 

where N is a sufficiently large number. Thus, we obtain 

If'~(K)l =o(1) as N--* + ~  (7.7) 

Analogously for sufficiently large N we have the estimate off'_, 

If~_(x)l~<2f~(x) y'. 02(n)~-l (n)~-l (n-1) lO~. lnc~(n) l  
n E  Y ( N )  

<<.2CoC'~ ~ Inl ~-21,,I exp[2C~ Inl r (N)+ 2 C,  p(N)] 
,'IE Y(N)  

~< 3Co C'=(ln ~) - '  

Thus, we obtain 

I f i (x ) l=O(1)  as N--* +o0 (7.8) 

Combining (7.6)-(7.8), we conclude that there is a positive number no 
such that for every N~> no and for every x s I(N) the estimate (7.5) is valid. 
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According to (7.2), (7~4), and (7.5), Eq. (4.4) can now be solved by the 
method of successive approximations. QED 

Because of (2.3) we have the following consequence of Theorem 7.1. 

Consequence 7.2. Let do>~2, C>max{C~,  b lC+C_l do}, and let 
Kid;N) (here ]dl~<do) be a solution of Eq. (4.4) such that Ix(d;N)l~< 
Cr(N) for N large. According to (3.1), we know that 2(d; N) = 20 + Kid; N). 
Then 2(d;N)�9 if d � 9  and 2(d;N)r when Id1>2. 
Therefore the interval {2(d; N): - 2  ~<d~<2} coincides with the energy 
band, which lies near ;to. 

8. ASYMPTOTIC  FORMULAS FOR THE ENERGY BAND 

We shall now prove asymptotic formulas for the band. 

Theorem 8.1. Suppose q(n) is a function from lt(Z). Let N be 
a positive number and let Q(x,N) be given by (2.1). Suppose that 
2or [ - 2 ,  2] is an eigenvalue and that O(n)�9 a normalized eigen- 
function of the Schr6dinger equation (1.1) with 2 = 2o. Let the function 
4o(x) be another solution of Eq. (1.1) with 2=2o obeying the condition 

"~ l l ' J  (1.4). Let 4>  1, r  [12ol + ( 2 0 - 4 )  -]/2, and 3 = ( 2 ~ - 4 )  ~/2, and positive 
constants Co as in (1.5) and C+ as in Lemma 1.1. Let the functions p(N), 
r(N), and sign(n) be given by (1.6), (5.1), and (5.11), respectively. Put 

N 

s(N)=s(q, Ao;N) = Z 
n =  - N + I  

[Q(n, N ) -  q(n)] 02(n) (8.1) 

If C>max{C~,261C+C_[} and ~:(d;N) is a solution of (4.4) with 
de  [ - 2 ,  2] such that Ix(d; N)I ~< Cr(N) for N large, then: 

1. 2(d; N) = 2o + x(d; N) �9 or(Q) with de  [ - 2 ,  2]. 

2. 2(+2; N) are the edges of the band and 12(2; N ) - A ( - 2 ; N ) [  = 
A(N) ~2u is the width of the band. 

3. The following asymptotic formula for the shift of the band relative 
to 20 holds: 

2(0; N) = 20 + s(N) + et(N) (8.2) 

where el(N)=o(r(N)) as N--+ + ~ .  

4. The following formulas for the bandwidth d(N) ~2u hold 
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(a) In the general case 

N 

In A(N)=s(N) ~ sign(k) O(k) q~(k)+ e2(d; N) (8.3) 
k =  - N + I  

where e2(d; N) = O(1 + p(N) r(N) N) uniformly with respect to d~ [ - 2 ,  2] 
as N---, +oo. 

(b) For a potential function q(x) such that p(N) r(N)N--*O as 
N--* +oo 

A(N)=461C+C I [ l + e 3 ( d ; N ) ]  

x exp s(N) ~ sign(k) O(k) q)(k) (8.4) 
k =  N + I  

where e3(d; N ) = o ( l )  uniformly with respect to d~ [ - 2 ,  2] as N ~  +oo. 

(c) For a potential function q(x) such that r(N)N is a bounded 
quantity for every N 

A(N) = 46 IC+ C I exp[2Ns(N)/6"1 + ~;4(d; N) (8.5) 

where e4(d; N ) = o ( l )  uniformly with respect to de [ - 2 ,  2"1 as N ~  +oo. 

(d) For a potential function q(x) such that r(N)N--* 0 as N---, + ~  

zl(N) = 46 IC+C_I  +es(d;N) (8.6) 

where es(d; N)=o(1)  uniformly with respect to d~ [ - 2 ,  2] as N-* +oo. 

Proof. According to Theorem 7.1, there exists a positive number 
such that for every N>~no and for every d~ [ - 2 ,  2], Eq. (4.4) has one and 
only one solution x(d; N) ~ [ -  Cr(N), Cr(N)] and from Consequence 7.2 
we have 2(d;N)~a(Q) iff d E [ - - 2 , 2 ] .  Points 2 ( + 2 ; N)  correspond to 
edges of the band. This implies parts 1 and 2 of Theorem 8.1. 

Substituting x(d; N) into (4.4), we obtain the following identity with 
respect to variables d and N: 

x.(d;N)= Z [Q(n,N)-q(n)"102(n)~-t(n,d,N) ~ l (n- l ,d ,N)  
n =  - - N +  1 

+ E - d +  H(d; N)] G- ' (d ;  N) t  

x ~ 02(n)o~-l(n,d,N)e-l(n-l,d,N) (8.7) 
n =  - - N +  I 
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According to Lemmas 6.1-6.4, we can rewrite (8.7) in the form 

/ 
x(d; N) = ~s(N) + O(p(N) r(N) ) + { - d  + O(p(N/2)) 

• exp[2C, r(N) N]  } 6C+ C_r -'-N 

x exp s(N) ~ sign(n) O(n) ~o(n) + O(p(N) r(N) N) 
n =  - - N +  1 

x [1 + O(p(N))] 

uniformly with respect to d~ [ - 2 ,  2] as N.--* + ~ .  Then, putting d = 0 ,  we 
get (8.2) and part 3 of Theorem 8.1. 

Now we will prove formulas (8.3)-(8.6) for the width of the band. Let 
us consider the derivative Oax. Since x(d; N)=f(x(d; N), d), 

Oax = (OK f )  auk + Oaf (8.8) 

Next, note that O~.f=o(1) uniformly with respect to d ~ [ - 2 , 2 ]  as 
N--, +or  (see proof of Theorem 7.1) and by Lemmas 6.1 and 6.3 we obtain 

E 1 3df=-- G ~ 02(n)ot-l(n,d,N)ct-l(n-l,d,N) 
n =  - - N +  I 

= - 6 C +  C_~-~Uexp s(N) ~ sign(n)O(n)q)(n) 
n=  N +  1 

+ O(p(N) r(N) N)I [1 +o (1 ) ]  

as N---, + ~ .  Thus, by (8.8) we have 

E O a ~ ' = - 6 C + C  ~-2Sexp s(N) ~ sign(n)O(n)~o(n) 
n =  - - N +  1 

+ O(p(N) r(N) N)]  I-1 + o(1 )] 

This leads to (8.3)-(8.6) under conditions 4(a)-4(d), respectively. Moreover 
in case 4(c) we have used the last fact of Lemma 1.1. Thus, Theorem 8.1 is 
proved completely. 

Remark. We should notice that the sets a(q) and a(Q) are 
independent of an arbitrary potential shear, i.e., these sets do not change 
with substitution of q(n + m) for q(n) in Eqs. (!.1) and (2.2). At the same 
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time, the formulas  (8.2)-(8.6) are not  invar iant  under  this substi tution.  
However,  we can remove this defect by the choice of the reference point  for 
every par t icular  potent ia l  function. 
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